

From alkynes:

- On partial reduction of alkyne with calculated amount of dihydrogen in the presence of Lindlar's catalyst
- On partial reduction of alkyne dihydrogen cis geometry is obtained.
- · On partial reduction of alkyne with sodium in liquid ammonia form trans alkenes.

Eg.

(i)

$$RC = CR^{1} + H_{2} \xrightarrow{Pd/C} R$$

$$R = CR^{1} + H_{2} \xrightarrow{Pd/C} H$$

$$R = CR^{1} + H_{2} \xrightarrow{Cis-Alkene}$$

(ii)

$$RC = CR^{1} + H_{2} \xrightarrow{\text{Na/liquid NH}_{3}} R = C = C$$
Alkyne
$$H = CR^{1} + H_{2} \xrightarrow{\text{Na/liquid NH}_{3}} R^{1}$$
Alkyne

From alkyl halides:

- On heating with alcoholic potash one molecule of halogen acid is eliminated to form alkenes
- · The above process is called dehydrohalogenation

- For halogens the rate of reaction is: iodine > bromine > chlorine
- For alkyl groups the rate of reaction is: tert > secondary > primary

From vicinal dihalides:

- Dihalides in which two halogen atoms are attached to two adjacent carbon atoms are known as vicinal dihalides.
- Vicinal dihalides goes dehalogenation for the formation of alkenes.
 CH₃CHBr-CH₂Br+Zn → CH₃CH=CH₂ + ZnBr₂

From alcohols by acidic dehydration:

- · On heating alcohols with concentrated sulphuric acid
- · Above process is known as acidic dehydration of alcohols

$$\begin{array}{ccc} H & H \\ H - C - C - H & \frac{1}{\Delta} & \frac{1}{\Delta} \\ H & - H & \frac{1}{\Delta} & \frac{1}{\Delta} & \frac{1}{\Delta} \\ H & OH & Ethene \\ \end{array}$$

Physical Properties of Alkene:

· Resemble alkanes in physical properties

Chemical Properties of Alkene:

· Electrophilic Addition of halogens

Addition reaction of HBr to unsymmetrical alkenes follows Markovnikov Rule
 Markovnikov rule: It states that negative part of the addendum (adding molecule) gets attached to that carbon atom which possesses lesser number of hydrogen atoms.